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ABSTRACT

In this article, we consider local estimations bé tMonte Carlo method for solving the equation teé global

illumination. The local estimations allow directtalculating the luminance at a predetermined pomta given

direction for an arbitrary bidirectional reflect@ndistribution function (BRDF). Thus, there is need to construct
the map of the illumination. Thereby it is much me@ffective than direct modeling or the methodinité element.

The use in lighting calculations of the object digmad by the spherical harmonics is also discugséte article.

Keywords
Local Estimation, Double Local Estimation, Globi&iinination, Monte Carlo
1. INTRODUCTION approach is associated with the complexity of thd g

Visualization of 3D scenes is produced on the bakis and the formation of large memory consumption.
solving the global illumination equation, which Solving the equation of global illumination the ifen
represents Fredholm integral equation of the secondelement method is also used, which got its name

kind [Bud00]: radiosity in the theory of the global illuminatiofihe
R -~ 1 N S adon A method is based on the assumption that all elenoénts
L(rl) =o€ ) )+;j|—( L "or(hil, )T‘{ L )Fd » (@ the scene are diffuse reflection, and then the temua

R (1) can be written as
where L(r,|) is the radiance at the poimtin the

~ Y G r ’ ’ r
direction T, o(r;l[") is the bidirectional scattering M(r)=M0(r)+;f|\/|( e e, ', (2)
distribution function (reflectance or transmittajyde, ] ) : . .
is the radiance of the direct radiation straighartne ~ WhereM(r) is the radiant exitance at the surface point

sources N is the normal at the poimtto the surface of r MO(r) is radiant exitance at th_e point. emitted
the scene. The equation (1) in a slightly differfemtn stralgbt fromA the light Source,
called the rendering equation was originally ohedin F_‘(N(r),(r - ’))‘N €I+ )
by J.Kajiya, but further we will use it in the forth). - (r-r’)?

The global illumination equation (1) does not héve form-factor, ©(rr’') is the visibility function of
analytical solution, and the numerical simulation glement dz’ from pointr, N(r) is a normal at the
methods are _use_d for its solutions. .It is possn_b)lplck_ pointr to the surface of the scene.

out some guidelines among them: ray tracing, direct

Monte Carlo simulation and the finite element metho I this paper, we propose to use the local MonteéoCa
Rav tracing has b id d and included ih estimation method, well known for solving the
ay tracing has been widespread and Inciuded in Suc ., yiasive transfer equation in the atmospheric aspti

well-known simulation program like 3D Studio Max M o o L
. . ar80] [EM76]. In addition, the ability of visualing
and Maya. One can differentiate between forward and three-dimensional (3D) objects defined in the t

backward tracing, where, respectively, the rays are : - .
traced from a light source, or from the receivehs ( of spherical harmonics is also analyzed in the pape

camera). 2. LOCAL ESTIMATION

Equation (1) is not suitable for statistical modgli as
a required function is in the integrand at the poin
but the solution is found at the point Besides, the

variablesr’ and |’ are not independent, but related by

the elementary

In the case of direct simulation, the scene isddidi
into elements in which photons are counted. As a
result, the illumination map is constructed. This
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Accordingly, we can rewrite thequatiol (1) in the
form of the integral over the volur

Lr)=L,¢ 1)+

r_er(N,T)(N',P) & @

r=rl) €=+

The kernel of the global illumination equatic(4)
contains &-function, which determines the singular
of the radiance angular distribution, and make
impossible to simulat¢he radiance by Monte Car
methods. The singularity cahe eliminated by the
integration over the space that tbe diffuse reflection
is equivalent to equation (2)s a result, the estimatic

| for L(r,) takes the form

4+t [Leinet ﬂ“’)&E" -
T

| =M>Qk(r ), (5)

wherek(r,r,) is the kernel of equatit (4), Q, is the
statistical weight of the Markov chi, andM is the
expectation operator of the random ray traject.

Markov chain models the sequential of random r
wandering around the scerftatistical veight of the
first ray Q, is determined by the initial radiance of t

light sourceL,(r,) . In this casé(r,r,) determines the

probability of transition from th@oint of the Markov
chainr, to the given point. [Mar80] [EM76]. From
all the nodes of the trajectory, where its intersectic
with the surface of the scene occu, the contribution
to the illumination at the point is calculated on th
basis of the kerné(r,r,) in equation(5). Thus, all the
probability distribution mustsatisfy the normalit
condition.

The values L,(r,/) and k(r,r,) will determine the

statistical weights of the Markov ch: Q,. In the case
of the diffuse reflectance model, each subseqt

statistical weight will be multiplied by the coefient

of reflection.

Equation (5)has been called the local estimate of
Monte-Carlo [Mar80] [EM76]It allows evaluating th
illumination ata given position on the scene. Thus
calculate the illumination at a given poir it is
necessary to construct tMarkov chain and for ever
act of reflection to calculate the kerrk(r,r,) for all
given points. The mathematical expectatiof the
obtainedvalue is equal to the illumination. Figure
shows the general scheme for constructhe Markov
chain and illuminationcalculations using a loc
estimation at a given point.

The Markov dain is a sequence of random events '
a finite or countable number of outcom
characterized by the property thiloosely speaking,
for the fixed present the future is independen the
past. In this case, the chain is constructed frdigha
source Furthermore, the initial weight of the ray is
to the light source radiance, taking into accourd
normalization by the flow. After that, the point
intersection of a ray with an element of the scier
founded, and the weight is multiplied by coefficient
of reflection. Then the kernel of equatic(4) is
calculated for each of the observable points, pligtl
by the weight of the ray and addedprevious values.
Whereupon the statistical sampling of the ray
performed in accordance with the diffuse reflect
and then the following intersection is sought.
process is repeated until either the ray leavesdtbae
or its weight falls below epredetermined threshold.
Sampling and averaginghe number of rays, one
obtains values of the illuminancat the observable
points. We emphasize that the local estimatiorna
calculating the value of the illuminatioat several
points by one ray. Thisia fundamental difference
the local estimation from the direct simulation aag
tracing.

Scene surfaces

Figure 1. The scheme for constructing a Marko\
chain and local estimation calculation: solid line—
the ray trajectory, dashed line— the local
estimation, dasheddot line — the trajectory
continuation.

3.DOUBLE LOCAL ESTIMATION

Mathematics of Double Local Estimation
Global illumination equation can be wen in the
operator form

L=L,+KL. (6)
The solution of this equation can represented in the

form of a Neumann series, which allows performr
the following transformatior
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that in an analytical form that takes the view
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Local estimatiorl corresponding to (8) may be calleda _
double local estimation [Mar80] [EM76] and will v~ Figure 2. The scheme of sampling the ray from the
the form source in the first order of reflection.

» A The ray sampling may be performed in a solid agyle
' =MZOan(r,I Faln)s ©) circumscribed around the sphere. Besigés sampled
" equiprobably from 0 to 2 and the angled
equiprobably from 0O tosing,,=a/R, wherea is a
k(r,lhrnlhn)=i20'l( 1 Jor(17L)E(r, ). (10) sphere rgdiusR is a distance from its center to the
z target point.

In the expression (10) the angular singularityoist las Then the normalizing condition of the probability
a result of integration, and the independent véemb  density by9 takes the form:

where

r,i,r,,1,,r"1" correspond to the geometry of the ray . . .

propagation [EM76]. C, | singdg=1= C,= T " —,(12)
- max a

Therefore, the double local estimation allows gty ° 1- \/LE

simulating the global illumination equation (4) and
calculating the radiance at a given point in a give and the formula fop sampling will be
direction for the reflection order greater than.one

1 1
. . . —— | dx= =1-a(l-cosg . ).
First Order of Double Local Estimation 1—cos9max£ XTu= pdalls 0%

The first order of reflection is contained in themnn
KL, of the equation (7) and can be calculated
straightly. Let’s consider the calculation of thiestf

order of the reflection brightness. In our B a2
o = (14)

(13)

Accordingly, the integral for the normalization
condition, multiplied by the inverggy:

implementation, we considered the isotropic splaéric
light sources, and Phong reflection model [Ph75% wa

used as a model for the reflection. The generatreeh Thus, Samp””g the ray in the dirgction to the seur
for calculating the radiance of the first order of ©On€ obtains the value of the radiance at the pafint
reflection is shown in Figure 2. source. Then using the Phong formula one obtaias th

) ) o reflection coefficient in the direction of interest
For the calculation of the first order, it is nesay to Multiplying it by the radiance and taking into ace®
integrate over the source from the point where the \ne cosine in the kernel of equation (1) one
reflection occurs. To evaluate the integral the Mon  gccumulates statistics. After that, one averages an
Carlo method was used. In the case of an isotropic pjyiplies result by the normalization coefficie(it).
spherical source, one can write the formula for the The resulting value is the radiance of the firstevrof
spherical triangle reflection. [BZK11]

(N =av+y@-)a-v*)eow, (1) Highest Orders of Double Local Estimation
Consider the calculation of the higher orders nacka
by the method of the double local Monte Carlo

where u=(1,R)=cos¢,v= R N)



estimation. In general, it is similéo the simulation ¢
local estimation, but there are some differencegure
3 shows a schematic diagram of the calculatiorhe
radiance by the double local estimat

Scene surfaces

Vg g\rA
Figure 3. The scheme for constructincthe Markov
chain and the calculation of the double loca
estimation. Legend is the same as orFigure 1.

Direction fan of I' at the point r' corresponds to
different points r.

To calculate the radianca a given point in a give
direction (r,[) one findsa point of intersection with &

element of the scene in the opposite direcr’. This
point is called sub-point.

Sampling theay emission from the source that in ¢
of an isotropic spherical source is not comped, one
finds a point of its intersection with an elemehttte
scene. The initial weight of the ray (Markov chaivill
be equal to the value of the radiance at the saq
point on the source. In the double local estima
similar to a local estimatiorit, is necessa to compute
the two kernels of theglobal illumination equation.
The first kerneldescribes the transition from the pc
of intersection of the ray intthe sul-point, and the
second onalescribes the transition frothe sub-point
to the observed point. Therefoitis necessary to tal
into account the normalizatioby Phong reflection
model.

Similarly with the local estimation one accumula
statistics. After averagingyne obtains the radiance
the observed point ia given direction from the ord
of reflection greater than one.

4. VALIDATION

The ideal option for the comparison of any numéei
method is the presencé exact analytical solutionor
the special cases. There ajast two analytical
solutions for the equation (2The first of thermris the
photometric sphere. However, to compare the acgt
of the method it ispoorly suited due tcthe full

symmetry. The seconspecia case is the illuminance
distribution in the scene dwo infinite parallel planes
and a point lighsource between them has bnamed
the Sobolev problerfSob44. The solution deriving in
Sobolev's articleis not convenientto the direct
calculations. Let’s ensider the solution of Sobol
problem that allowsobtairing the result in a more
acceptable analytical form.

Analyzing the Sobolev problem one transforms
equation (2) into a system of two integral equati
Each of he equations describes the distribution
illumination on one of the planes. The correspog!
equation for the first plane takes the form (foe
second onewill be a similar expression with oth
indices):

g BT h 15
=0 ”J.[1+(r—r')2}2+(ff+r2)32’ (19)

whereE;(r) is the illuminance cthei-th plane {=1,2),

r is the radiusrector of the investigated point frothe
projection of a poinsourcein thei-th plane,p; is the
reflection coefficient ofhei-th planeh; is the distance
from the source to theth plane. Let's suppose the
source intensity equal toahc h;+h,=1.

Equations form a system of integral equations
convolution type. To solvthe system of equations one
should performthe Fourier transform. Afterome
analytical transformationand performing the inverse
Fourier transform onean obtain the final expressi
for the illuminationdistribution on eaclplane:

E() =

)7
ZT e pk K, (K)+ e ™"
0 1—p1p2k2 Ki(k)

where K(K) is the modified Bessel function ¢
imaginary argument or the MacDonald functior the
first order, dis the zeroerder Bessel functic.

Equation (16)is convenient foicomputer calculations
and allows comparing the mathematical mode
techniques. Figure 4 shows the comparison of
illumination distribution received by tfrmethod of the
local Monte Carlo estimation, by the double Ic
estimaion and the exact solution of Sobolev probl
(16).

The figure clearly shows a surge in the bottomhef
chart of the double local estimation. It is coned
with the fact that in our implementation for e:
calculated point in the double local estimatiorfedint
packages rays aresed. Byincreasing the ray number,
these artifacts disappear.

K,(K)J, (kr)k?dk, (16)
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Figure 4. llluminance distribution in Sobolev problem:
h;=h,= 0.5, andcoefficients of reflectionp, = p, = 0.5.

In the calculation by the local estimatiof 2000 rays
were used, and the computation time was less th
second bya computer with the processor AMD Athl
64 X2 5200.

5. SPECTRAL REPRESENTATION OF
3D OBJECTS

Spherical Harmonics

Standard representation of 3Dbjects is amesh
representatioin which objects are described by the
of vertices connected in the faces. Trepresentation
is universal and can describe any object. Howeit
can't precisely reproduceprecisely many of the
objects, and in the case sifgnifican impact of error
on the result the solid modeling of objects caubed,
when objects are described analytically. SolidW
and TracePro are examples of the most poj
programs of such an approach.

One of thepromising directions in the representatior
3D objects is the usage of object expansion in thes!
of spherical functions [MCAO6]Such a description
the objects allows controlling the visualizationatjty
of objects. So objects that are far away from
camera can be rendered at the visualization with
quality. From the standpoint of photome the
significant advantage of this approach is the carttius
reproduction of normalvithout approximation. Let
consider the mathematical formalism underlying
spherical harmonics.

Spherical harmonic{Y,'(6,¢): [ <K is the special
function, defined on the unit sphere

2k+1
47

Y.(6,0) = QU(cod)d™,  (17)

where6 is the zenith ang [0 z], ¢ is the azimuthal
angle [0 2],
(k—m!

Q)= (ks m)!

R ). (18)

are the seminormalized Schmidt polynomials,
P (cod ) arethe associated Legeni polynomials

Spherical harmonics are orthogonal on the unit 1s:

2n

[ [Y(0,0)Y,(0,¢)sin0d09 =5, 8, v, (19)
0o

wheres is Kronecker delta symt.

The gstem of spherical functions is complete and
twice continuously differentiable function defined
the sphere can be expanded in the spectrur
spherical harmonics [TS76]

H0.9)=3 3 AP (o9&, (20)

k=0m=-k

whereA,, are Fourier coefficients defined

2r @

Anm=[ [ 1(0.0)Y](cos0)sinododp .

Note that the use ofhe semi-normalized Schmidt
polynomials eliminates the need to calculate faak®
in the spectral representation of the obj that
significantly improves computing performar
Therefore any object uniquely defined on the spt
relative to a certaipoint can be expanden spherical
harmonics.

Visualization Spectral Objects

For rendering 3D scends any methods, it is always
necessary to solve two basic problems: finding
intersection point of theay with the object and the
normal at a given point aihe 3D object. In the case of
the object representationy a grid, these tasks are
successfully sold and optimizecLet's consider these
problems in the case of object representation &
basis of spherical functions.

Normal to the surface described by the func
U(r,0,0), given in spherical coordinates, is equal to
gradient at this point

ou. 1oU. 1 oU.
gadU=—¢ +-—g+———¢.
or r oo r sind oo
Therefore, it is necessary to find the partial ehives,
and then to transfer to Cartesian coordinate sy:
Finding cerivatives with respect to r ang is not
difficult. In turn, the derivativewith respect to6
requires differentiating the polynomials Schmidt.

(21)



Using the known relations one can eventually obtain 6, PRACTICE

the following expression: We implemented the algorithms of the local estiorati
~ U U with the ability of 3D objects representation ireth
gfadU=i[—PSin29 cosp+ sifh co8 cog o~ i a(p)+ basis of spherical functions in the MATLAB

environment. Figure 5 shows a visualization of a
simple room with a single isotropic light sourcedam
human head, represented by spherical harmonics.
Originally the head was represented by a mesh of
R U 32654 faces. In the scene, the head representation
+k(—psin6 cod - siﬁe—j. (22) transformed into the series of 32 spherical harg®ni
o We have compared the calculation time in cases of
Finding the intersection of the ray with the object object representation by the series of spherical
specified by spherical harmonics is also not aiariv.  harmonics and a standard grid. Time calculationgisi
task. Consider an object defined by the spherical spherical harmonics increase by 40%, but the amount
harmonics and located in the center of a Cartesianof stored information decreased more than in 1000
coordinate system, and the ray from paigtin the times.

direction] defined in a vector form
r()=ro+4 . (23)

Cosine of the anglé at the point of intersection of the
surface and the ray relative to the center of thieab
can be expressed as

+]| —psin?0 sing + sird cod sim@+ cqrﬁ +
%) op

cosd = (I2,r)= %+ 15 — . (24)
Il Jrzreze2e(r,)
Vectorp is equal consequentially
p=r-KKr)=,+t Kk (z-18).  (25)
Cosine and sine of the angld¢ake the form

@i.p) %+ & Figure 5. 3D scene rendered using the local
cosp = o = estimation
\/(ro +d Kz, K 12) | _ _
n our work, we implemented the algorithm of the
. G.0) Yot |2 double local estimation in the MATLAB environment.
Sln(P=W= ————. (26) Double local estimation allows directly calculatitige
\/(r0+él —kz,—k Izi) radiance at any point in 3D scene. Figure 6 shdas t
luminance angular distribution of multiply refledte
As aresult, one get dependences of the artgéslo light at the point of the lower plane in Sobolev
from one variables. At the point of intersection the  proplem. The uniform spherical light source is ussd
equality takes place a luminaire. The Phong model describes the refiacti
U (‘ro —41,0(2),0())=0. 27) from the surface.

Equation (27) contains a set of solutions, but dhby
first point of intersection is interested in thiase. It
can be found through various methods, ranging from _ad
low efficiency, such as successive approximatis, a ~—
well as more sophisticated algorithms such as genet
The use of a particular algorithm depends on the
requirements of performance and accuracy. In our
implementation, we calculated values successively ] o
with a fixed interval and localized the position thi Figure 6. The radiance angular distribution of
first intersection point, and then using the bimect multiple reflected light in the Sobolev problem.
method refined it.




7. SUMMARY

Nowadays we do not know any method or software
application that allows calculating directly theli@nce

at rendering 3D scene. The double local estimasian
method that allows obtaining the radiance valuesnst
point of 3D scene. Its application allows reviewing
newly the complete regulatory framework for the
illuminating engineering that was created due te th
ability of calculation only the illumination.

Note that the convergence of the local estimat®n i
significantly higher than the traditional radiosiand
the direct simulation, because it allows evaluatigigt
immediately at all the points in the scene. At shene
time, it is significant that the local estimatiooed not
require constructing the mesh, which greatly reduce
the amount of RAM.

Methods of local estimation could find its use paty
in lighting calculations, but also in computer gras.
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